
DOE	ASCR	Applied	Mathematics	Principal	Investigators'	(PI)	Meeting,	Rockville,	MD,	September	11-12,	2017

Abstract

Productive	and	extreme-scale	graph	computations	enabled	by	GraphBLAS
Ariful Azad	and	Aydın	Buluç,	Computational	Research	Division,	Lawrence	Berkeley	National	Laboratory	

ü GraphBLAS-based	approach	separates	computation-
al	kernels	from	high-level	algorithms	&	applications.

ü Boosts	the	productivity	of	applications	significantly.	
ü Resulted	in	highly-scalable	algorithms	for	matching,	

ordering,	connected	components,	maximal	
independent	set	and	graph	clustering.

Future	directions	and	impacts:
❄ Short	term:	A	GraphBLAS-compliant	library	with	
optimized	in-node	performance.	Explore	new	domains.
❄Medium	term:	Communication-avoiding	algorithms	
for	GraphBLAS primitives	targeting	future	exascale
systems.	Enable	new	high-level	algorithms.		
❄ Long	term:	Provide	easy-to-use	graph	libraries	for	
biology,	scientific	computing	&	machine	learning.	

Areas	needing	high-performance	graph	computation:
ü Machine	Learning
ü Computational	Biology
ü Scientific	computing
ü Quantum	computing	

We	develop	several	classes	of	graph	algorithms	
using	linear-algebraic	(GraphBLAS)	primitives.	In-
house	combinatorial	BLAS	library	enabled	rapid	
development	of	bipartite	graph	matching,	reverse	
Cuthill-McKee	ordering,	triangle	counting,	
connected	components	and	Markov	clustering	
algorithms	that	scale	to	thousands	of	cores	on	
modern	supercomputers.	These	algorithms	in	turn	
empower	key	science	applications		including	
protein	family	detection	and	sparse	linear	solvers.

Approx.	weight	
perfect
matching	

Maximum	
cardinality	

matching	(MCM)	

Maximal	
cardinality		
matching

16 32 64 128 256 512 1024 20482

4

8

16

32

64

128

256

Number of Cores

Ti
m

e
(s

ec
)

ljournal
cage15
road_usa
nlpkkt200
hugetrace
delaunay_n24
HV15R

12
x-
18
x
sp
ee
du

ps

~80x	increase	of	cores	(Edison)

Fig	1.	Algorithmic	chain	to	be	developed

4

16

64

256

1024

1 4 16 64 256 1024

Ti
m

e
(s

)

Number of Nodes (24 cores/node)

HipMCL MCL (van Dongen)

(1) Distributed-memory	graph	matching
ü A	suite	of	parallel	algorithms	developed.	Sparse	

matrix-sparse	vector	multiply,	inverted	index	used.
ü Scales	to	several	thousands	of	cores	
ü Impact: Remove	the	sequential-ordering	

bottleneck	from	SuperLU and	STRUMPACK	

❄Why	graphs?	Graph	computation	drives	many	
applications	in	biology	and	scientific	computing.
❄Why	GraphBLAS?	The	diversity	and	rapid	
evolution	of	applications,	architectures	&	algorithms	
motivates	us	to	isolate	a	small	number	of	graph	
kernels	entrusted	with	delivering	high-performance.	
❄ Expected	impacts:	(a)	better	understanding	of	
data	and	computational	patterns,	(b)	rapid	
development	of	high-performance	applications.	

Sparse	-	Dense		
Matrix	Product

(SpDM3)

Sparse	-	Sparse	
Matrix	Product
(SpGEMM)

Sparse	Matrix	Times	
Mul<ple	Dense	Vectors

(SpMM)

Sparse	Matrix-	
Dense	Vector		

(SpMV)

Sparse	Matrix-	
Sparse	Vector		
(SpMSpV)

GraphBLAS	primi<ves	in	increasing	arithme<c	intensity

Shortest	paths	
(all-pairs,	

single-	source,	
temporal)

Graph	clustering	
(Markov	cluster,	
peer	pressure,	
spectral,	local)

Miscellaneous:	
connec<vity,	traversal	
(BFS),	independent	sets	
(MIS),	graph	matching	

Centrality	
(PageRank,	

betweenness,	
closeness)

Higher-level	combinatorial	and	machine	learning	algorithms

Classifica7on	
(support	vector	

machines,	Logis<c	
regression)

Dimensionality	
reduc7on	
(NMF,	PCA)	

We	develop	graph	and	machine	learning	algorithms	
using	linear-algebraic	primitives.	Two	thrusts:
1.	Develop communication-avoiding	and	work-
efficient	primitives	(Aydin’s	poster)
2.	Design	algorithms	using	optimized	primitives

Results Conclusions	and	Future	Work

(2)		Distributed-memory	Markov	clustering	(HipMCL)
ü Sparse	matrix-matrix	multiply,	connected	

components,	and	k-select	algorithms	used.	
ü Scalable	up	to	136K	cores	on	NERSC/Cori
ü Impact: Reduced	a	45-day	clustering	job	to	just	an	

hour.		Clustered	massive	networks	with	70B	edges.	

|V|	 |E| HipMCL
(cores)

MCL
shm

69
M	

12	
B

1.66	hr
(24K)

45
day

70
M

68	
B

2.41	hr
(136K) X

282
M

37	
B

3.23	hr
(136K)

X

Fig.	Performance	of	HipMCL w.r.t. a	previous	approach

Fig.	(a)	Classes	of	algorithms,	(b) performance	of	MCM

Areas	in	which	we	can	help

Areas	in	which	we	need	help

References

Areas	needing	high-performance	graph	computation:
ü Biology	&	other	domains	to	understand	applications
ü Programming		language	and	libraries	(UPC,	GASNet)
ü Efficient	FILE	I/O	(HDF5)

1. Azad,	Buluç and	Pothen.	Computing	maximum	cardinality	matchings	in	
parallel	on	bipartite	graphs	via	tree-grafting.	TPDS,	2017.

2. Azad,	Jacquelin,	Buluç,	and	Ng.	The	reverse	Cuthill-McKee	algorithm	in	
distributed-memory.	IPDPS,	2017.

3. Azad,	Ballard,	Buluç,	Demmel,	Grigori,	Schwartz,	Toledo,	& Williams.	
Exploiting	multiple	levels	of	parallelism	in	sparse	matrix-matrix	multiplication.	
SIAM	Journal	on	Scientific	Computing,	2016.

4. Azad	and	Buluç.	Distributed-memory	algorithms	for	maximum	cardinality	
matching	in	bipartite	graphs.	IPDPS,	2016.

5. Azad,	Buluç and	Gilbert.	Parallel	triangle	counting	and	enumeration	using	
matrix	algebra.	IPDPSW	2015.

Motivation

Approach

